A. \(32\pi c{m^3}\)
B. \(64\pi c{m^3}\)
C. \(8\pi c{m^3}\)
D. \(16\pi c{m^3}\)
C
Gọi bán kính đáy và chiều cao của hình trụ lần lượt là r và h (r, h > 0)
Thiết diện là hình chữ nhật ABCD có chu vi \(2\left( {AB + BC} \right) = 2.\left( {h + 2r} \right)\)
Theo giả thiết ta có \(2\left( {h + 2r} \right) = 12 \Leftrightarrow h + 2r = 6 \Rightarrow h = 6 - 2r\left( {r < 3} \right)\)
Thể tích khối trụ \(V = \pi {r^2}h = \pi {r^2}.\left( {6 - 2r} \right) = \pi r.r.\left( {6 - 2r} \right)\)
Áp dụng BĐT Cô-si cho 3 số \(r;r;6 - 2r\) ta được
\(r + r + 6 - 2r \ge 3\sqrt[3]{{r.r\left( {6 - 2r} \right)}} \Leftrightarrow \sqrt[3]{{r.r.\left( {6 - 2r} \right)}} \le 2 \Leftrightarrow {r^2}\left( {6 - 2r} \right) \le 8 \Leftrightarrow \pi {r^2}\left( {6 - 2r} \right) \le 8\pi \)
Hay \(V \le 8\pi .\) Dấu = xảy ra khi \(r = 6 - 2r \Leftrightarrow r = 2\left( {TM} \right)\)
Vậy giá trị lớn nhất của khối trụ là \(V = 8\pi .\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247