Cho số phức z = a + bi (a; b thuộc ℝ) thỏa mãn 4( z - z gạch)-15i=i(z+z gạch -1)^2 và môđun của số phức

Câu hỏi :

Cho số phức z = a + bi (a; b Î) thỏa mãn 4zz¯15i=iz+z¯12  và môđun của số phức z12+3i  đạt giá trị nhỏ nhất. Khi đó giá trị của 2a + 8b bằng


A. 2;



B. 15;


C. 16;

D. 14.

* Đáp án

* Hướng dẫn giải

Đáp án đúng là: C

4zz¯15i=iz+z¯12

Û 4(a + bi - a + bi) - 15i = i(a + bi + a - bi - 1)2

Û 8bi - 15i = i(2a - 1)2

Û 8b - 15 = (2a - 1)2

Ta có:

z12+3i=a122+b+32

=142a12+b+32=8b154+b+32

=8b154+b2+6b+9=b2+8b+214

1582+8.158+214=398

Dấu “=” xảy ra Û b=158;a=12 .

Khi đó 2a+8b=2.12+8.158=16.

Vậy 2a + 8b = 16.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra Học kì 2 Toán 12 có đáp án (Mới nhất) !!

Số câu hỏi: 713

Copyright © 2021 HOCTAP247