Trong không gian Oxyz, cho mặt cầu (S): x^2 + y^2 + z^2 + 2x - 4y + 2z - 3 = 0. Viết phương trình

Câu hỏi :

Trong không gian Oxyz, cho mặt cầu (S): x2 + y2 + z2 + 2x - 4y + 2z - 3 = 0. Viết phương trình mặt phẳng (a) chứa trục Oz cắt mặt cầu (S) theo thiết diện là đường tròn có chu vi bằng 6p.


A. 2y + z = 0;



B. 2x + y = 0;


C. 2x - y = 0;

D. 2x + y + z = 0.

* Đáp án

* Hướng dẫn giải

Đáp án đúng là: B

Media VietJack

(S): x2 + y2 + z2 + 2x - 4y + 2z - 3 = 0

Û (x2 + 2x + 1) + (y2 - 4y + 4) + (z2 + 2z +1) = 9

Û (x + 1)2 + (y - 2)2 + (z + 1)2 = 9

Vậy mặt cầu (S) có tâm là điểm I(-1; 2; -1) và R = 3

Phương trình mặt phẳng (a) chứa trục Oz cắt mặt cầu (S) theo thiết diện là đường tròn có bán kính là HM

Nên suy ra C = 2p.HM = 6p Þ HM = 3 = R

Vậy mặt phẳng đã cho đi qua tâm I của mặt cầu

Phương trình mặt phẳng (a) chứa trục Oz nên véc-tơ pháp tuyến của (a) là n=a;b;c  vuông góc với véc-tơ chỉ phương của Oz là (0; 0; 1)

Þ a.0 + b.0 + c.1 = 0

Þ c = 0

n=a;b;0

Vậy phương trình mặt phẳng (a) đi qua I và có véc-tơ pháp tuyến n=a;b;0  

a.(x + 1) + b.(y -2) = 0

Û ax + by + (a - 2b) = 0 (1)

Do phương trình mặt phẳng (a) đi qua Oz nên đi qua điểm O

Vậy từ (1) ta có a - 2b = 0 Û a = 2b

Thay a = 2b vào (1) nên suy ra (1) trở thành

2bx + by = 0

Û 2x + y = 0.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra Học kì 2 Toán 12 có đáp án (Mới nhất) !!

Số câu hỏi: 713

Copyright © 2021 HOCTAP247