Trong không gian Oxyz , cho ba điểm A(2; -2; 4), B(-3; 3; -1), C(−1; −1; −1) và mặt phẳng (P): 2x - y + 2z + 8 = 0. Xét điểm M thay đổi thuộc (P), tìm giá trị nhỏ nhất của biểu thức T = 2MA2 + MB2 - MC2.
A. 102;
B. 35;
C. 105;
Đáp án đúng là: A
Gọi I là điểm thỏa mãn:
Suy ra I(1; 0; 4)
Khi đó, với mọi điểm M(x; y; z) Î (P), ta luôn có
= 2MI2 + (2IA2 + IB2 - IC2) = 2MI2 + 30
Do đó, T đạt GTNN ⇔ MI đạt GTNN ⇔ MI ^ (P)
Ta có:
Vậy Tmin = 2.62 + 30 = 102.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247