Cho tứ diện ABCD có các cạnh AB, AC và AD đôi một vuông góc với nhau, AB = 6a, AC = 5a, AD = 4a.

Câu hỏi :

Cho tứ diện ABCD có các cạnh AB, AC và AD đôi một vuông góc với nhau, AB = 6a, AC = 5a, AD = 4a. Gọi M, N, P tương ứng là trung điểm của các cạnh BC, CD, DB. Thể tích V của tứ diện AMNP là:

A. \(V = \frac{{5{a^3}}}{3}.\)

B. \(V = \frac{{20{a^3}}}{3}.\)

C. \(V = 5{a^3}\)

D. \(V = 10{a^3}\)

* Đáp án

C

* Hướng dẫn giải

Thể tích khối tứ diện ABCD là: \({V_{ABCD}} = \frac{1}{6}AB.AC.AD = \frac{1}{6}.6a.5a.4a = 20{a^3}\) 

Ta có:

\(\frac{{{V_{A,MNP}}}}{{{V_{ABCD}}}} = \frac{{\frac{1}{3}.{S_{\Delta MNP}}.{d_{A;BCD}}}}{{\frac{1}{3}.{S_{\Delta BCD}}.{d_{A;BCD}}}} = \frac{{{S_{\Delta MCP}}}}{{{S_{\Delta BCD}}}} = \frac{1}{4}\) (do \({S_{\Delta DNP}} = {S_{\Delta MNC}} = {S_{\Delta BPM}} = \frac{1}{4}{S_{\Delta BCD}}\) )

\( \Rightarrow {V_{A.MNP}} = \frac{1}{4}{V_{ABCD}} = \frac{1}{4}.20{a^3} = 5{a^3}.$\) 

 

Copyright © 2021 HOCTAP247