Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x - 1)^2 + (y + 2)^2 + (z - 3)^2 = 12. Gọi (P) là mặt phẳng

Câu hỏi :

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x - 1)2 + (y + 2)2 + (z - 3)2 = 12. Gọi (P) là mặt phẳng đi qua hai điểm A112;0;0,B3;0;5  và cắt mặt cầu (S) theo giao tuyến là đường tròn (C) sao cho khối nón có đỉnh là tâm của (S), đáy là hình tròn (C) có thể tích lớn nhất. Biết mặt phẳng (P) có phương trình dạng 2x + by + cz + d = 0. Khi đó giá trị biểu thức b2 + c2 + d2 bằng


A. 144;



B. 113;


C. 105;

D. 126.

* Đáp án

* Hướng dẫn giải

Đáp án đúng là: D

Media VietJack

Mặt cầu (S): (x - 1)2 + (y + 2)2 + (z - 3)2 = 12 có tâm I(1; -2; 3) và bán kính R=23

+) AB=52;0;5

+) Mặt phẳng (P) có phương trình dạng 2x + by + cz + d = 0 có véc-tơ pháp tuyến là 

AB thuộc mặt phẳng (P) nên véc-tơ pháp tuyến của (P) vuông góc với

Ta suy ra được hệ phương trình

52.2+0.b+5c=02.112+d=0  2.3+5c+d=0c=1     d=11     5c=6d

Từ đó suy ra (P) có dạng 2x + by - z + 11 = 0

Khối nón có đỉnh là tâm của (S), đáy là hình tròn (C) có thể tích là

V=13IH.πMH2=13IH.πIM2IH2

=13IH.π12IH2 đạt GTLN khi IH(12 - IH2) đạt GTLN

Ta có:

Với x > 0, xét hàm số f (x) = x(12 - x2) = 12x - x3

Þ f '(x) = 12 - 3x2 = 0 Û x2 = 4 Þ x = 2 (Do x > 0)

Vẽ được BBT của hàm số f (x) = x(12 - x2) trên (0; +¥)

Media VietJack

Dựa vào BBT nên suy ra f (x) đạt GTLN bằng 16 khi x = 2

Nên suy ra IH(12 - IH2) đạt GTLN khi IH = 2

IH=dI/P=2.1+b.23+1122+b2+12=2

102bb2+5=25bb2+5=1

5b=b2+5

Þ |5 - b|2 = b2 + 5

Û 25 - 10b + b2 = b2 + 5

Û 10b = 20 Û b = 2

Từ đó suy ra b2 + c2 + d2 = 22 + (-1)2 + 112 = 126.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra Học kì 2 Toán 12 có đáp án (Mới nhất) !!

Số câu hỏi: 713

Copyright © 2021 HOCTAP247