Cho ∫01fxdx=2 . Giá trị của ∫0π4fcos2xsin2xdx bằng
A. -1;
B. 2;
C. -2;
Đáp án đúng là: D
Đặt u = cos 2x
Đổi cận
+) x = 0 Þ u = 1
+) x=π4⇒u=0
Khi đó ∫0π4fcos2xsin2xdx=−12∫10fudu
=12∫01fudu=12.2=1.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247