Có bao nhiêu số phức z thỏa mãn là số thuần ảo và |z - 2i| = 1?
A. 0;
B. Vô số;
C. 1;
Đáp án đúng là: D
Đặt z = a + bi
Khi đó
= a + bi + ai + bi2 + a - bi = (2a - b) + ai
Để là số thuần ảo nên suy ra
2a - b = 0 Û b = 2a
Khi đó z = a + 2ai
+) |z - 2i| = 1
Û a2 + (2a - 2)2 = 1
Û 5a2 - 8a + 3 = 0
Û 5a2 - 5a - 3a + 3 = 0
Û 5a(a - 1) - 3(a - 1) = 0
Û (5a - 3)(a - 1) = 0
Vậy có 2 số phức z thỏa mãn là và z = 1 + 2i.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247