Trong không gian Oxyz, cho mặt phẳng (P) : x - 2y + 2z - 5 = 0 và hai điểm A(-3; 0; 1), B(1; -1; 3).

Câu hỏi :

Trong không gian Oxyz, cho mặt phẳng (P) : x - 2y + 2z - 5 = 0 và hai điểm A(-3; 0; 1), B(1; -1; 3). Tìm phương trình của đường thẳng ∆ đi qua A và song song với (P) sao cho khoảng cách từ B đến đường thẳng ∆ là nhỏ nhất.        

A. x226=y+111=z32;

B. x+226=y111=z+32;

C. x326=y11=z+12;

D. x+326=y11=z12.

* Đáp án

* Hướng dẫn giải

Đáp án đúng là: D

+) nP=1;2;2

+) AB=4;1;2

Viết phương trình mặt phẳng (Q) qua A và song song với mặt phẳng (P) là:

(Q): x - 2y + 2z + m = 0

Mặt phẳng (Q) qua A Þ -3 + 2 + m = 0 Û m = 1

Vậy (Q): x - 2y + 2z + 1 = 0

Lấy H là hình chiếu của B lên (Q)

Đường thẳng BH qua B và có véc-tơ chỉ phương là nQ=1;2;2

BH:x=1+t    y=12tz=3+2t  

H là giao của BH và (Q) nên ta có

(1 + t) - 2(-1 - 2t) + 2(3 + 2t) + 1 = 0

Û 9t + 10 = 0 t=109

Vậy H19;119;79

AH=269;119;29=1926;11;2

Vậy phương trình cần tìm là phương trình AH đi qua A(-3; 0; 1) và có véc-tơ chỉ phương là (26; 11; -2)

AH:x+326=y11=z12.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra Học kì 2 Toán 12 có đáp án (Mới nhất) !!

Số câu hỏi: 713

Copyright © 2021 HOCTAP247