Trong không gian Oxyz, cho mặt phẳng (P) : x - 2y + 2z - 5 = 0 và hai điểm A(-3; 0; 1), B(1; -1; 3). Tìm phương trình của đường thẳng ∆ đi qua A và song song với (P) sao cho khoảng cách từ B đến đường thẳng ∆ là nhỏ nhất.
A.
B.
C.
D.
Đáp án đúng là: D
+)
+)
Viết phương trình mặt phẳng (Q) qua A và song song với mặt phẳng (P) là:
(Q): x - 2y + 2z + m = 0
Mặt phẳng (Q) qua A Þ -3 + 2 + m = 0 Û m = 1
Vậy (Q): x - 2y + 2z + 1 = 0
Lấy H là hình chiếu của B lên (Q)
Đường thẳng BH qua B và có véc-tơ chỉ phương là
H là giao của BH và (Q) nên ta có
(1 + t) - 2(-1 - 2t) + 2(3 + 2t) + 1 = 0
Û 9t + 10 = 0
Vậy
Vậy phương trình cần tìm là phương trình AH đi qua A(-3; 0; 1) và có véc-tơ chỉ phương là (26; 11; -2)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247