Cho hai số phức z1, z2, thỏa mãn |z1 + 6| = 5, |z2 + 2 - 3i| = |z2 - 2 - 6i|. Giá trị nhỏ nhất của |z1 - z2| bằng
A.
B.
C.
D.
Đáp án đúng là: C
+) |z1 + 6| = 5
Û (x1 + 6)2 + y12 = 25
M(x1; y1) là điểm biểu diễn của số phức z1 và thuộc đường tròn tâm I(-6; 0) có bán kính R = 5
+) |z2 + 2 - 3i| = |z2 - 2 - 6i|
Û (x2 + 2)2 + (y2 - 3)2 = (x2 - 2)2 + (y2 - 6)2
Û x22 + 4x2 + 4 + y22 - 6y2 + 9 = x22 - 4x2 + 4 + y22 - 12y2 + 36
Û 8x2 + 6y2 - 27 = 0
N(x2; y2) là điểm biểu diễn của số phức z2 và thuộc đường thẳng 8x + 6y - 27 = 0
Ta có |z1 - z2| bằng MN và để |z1 - z2| đạt GTNN thì MN nhỏ nhất
Khi đó đường thẳng MN đi qua I, vuông góc với đường thẳng trên và M gần N nhất
Theo hình vẽ
MNmin = IN - IM
Với và IM = R = 5
Nên suy ra
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247