Cho bất phương trình log7(x^2 +2x + 2) + 1 > log7(x^2 + 6x + 5 + m).

Câu hỏi :

Cho bất phương trình log7(x2 +2x + 2) + 1 > log7(x2 + 6x + 5 + m). tất cả bao nhiêu giá trị nguyên của m để bất phương trình trên tập nghiệm chứa khoảng (1; 3)?


A. 36.         



B. 34.         


C. s.     

D. 35 .

* Đáp án

* Hướng dẫn giải

Đáp án đúng là A

Bất phương trình x2+6x+5+m>0log77x2+2x+2>log7x2+6x+5+m

m>x26x56x2+8x+9>m , x (1; 3) (*)

Với f (x) = −x2 – 6x – 5; g(x) = 6x2 + 8x + 9. Xét sự biến thiên của hai hàm số f (x) và g (x)

+ f '(x) = −2x – 6 < 0, x (1; 3)  f (x) luôn nghịch biến trên khoảng (1; 3)

 max[1;3]f (x) = f (1) = –12

+g'(x) = 12x + 8 > 0, x (1; 3)  g (x) luôn đồng biến trên khoảng (1; 3)

min[1;3]g (x) = g (1) = 23

Lúc này (*)    mmax[1;3]fxmmin[1;3]gx

Khi đó –12≤ m≤ 23. Mà m ℤ nên m {12; 11; 10;…..; 22; 23}

Vậy có tất cả 36 giá trị nguyên của m thỏa mãn yêu cầu bài toán.

 

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra Học kì 2 Toán 12 có đáp án (Mới nhất) !!

Số câu hỏi: 713

Copyright © 2021 HOCTAP247