Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{{x + 1}}{2} = \frac{{y - 1}}{{ - 1}} = \frac{z}{2}\) và hai đi�

Câu hỏi :

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{{x + 1}}{2} = \frac{{y - 1}}{{ - 1}} = \frac{z}{2}\) và hai điểm A(1;5;0), B(3;3;6). Điểm \(M \in d\) sao cho tam giác MAB có diện tích nhỏ nhất có tọa độ là

A. M(0;1;2)

B. M(2;1;0)

C. M(1;0;2)

D. M(-3;2;-2)

* Đáp án

C

* Hướng dẫn giải

Cách 1: Tự luận

Ta có điểm \(M \in d \Rightarrow M\left( { - 1 + 2t;1 - t;2t} \right)\). Suy ra \(\overrightarrow {AB}  = \left( {2; - 2;6} \right);\overrightarrow {AM}  = \left( {2t - 2; - t - 4;2t} \right)\).

Nên \(\left[ {\overrightarrow {AB} ,\overrightarrow {AM} } \right] = \left( {2t + 24;8t - 12;2t - 12} \right)\)

\( \Rightarrow {S_{\Delta ABM}} = \frac{1}{2}\sqrt {72{t^2} - 144t + 864}  = \frac{1}{2}\sqrt {72\left[ {{{\left( {t - 1} \right)}^2} + 11} \right]}  \ge 3\sqrt {22} \) \(\Rightarrow t = 1 \Rightarrow M\left( {1;0;2} \right)\)

Cách 2: Trắc nghiệm

Thế 4 điểm ở 4 đáp án vào đường thẳng đã cho, ta loại đáp án A, B

Còn đáp án C, D Ta tính diện tích tam giác theo công thức \({S_{\Delta MAB}} = \frac{1}{2}\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AM} } \right]} \right|\) , ở phương án nàocho diện tích nhỏ nhất ta chọn được phương án C

Copyright © 2021 HOCTAP247