A. Tập rỗng
B. Một mặt cầu
C. Một điểm
D. Một đường tròn
A. M(-1;-1;2)
B. M(0;-1;-2)
C. M(2;-1;1)
D. M(7;1;-2)
A. M(0;1;2)
B. M(2;1;0)
C. M(1;0;2)
D. M(-3;2;-2)
A. 1
B. - 1
C. 0
D. - 2
A. 1
B. 0
C. 2
D. 3
A. (0;0;9)
B. (0;0;3)
C. (0;0;-3)
D. (0;0;-9)
A. M(-2;1;0)
B. M(-2;-1;0)
C. M(2;1;0)
D. M(2;-1;0)
A. (4;2;-9)
B. (-4;2;9)
C. (-4;-2;9)
D. (4;-2;9)
A. (5;- 5;- 6)
B. (3;5;- 6)
C. (- 5;- 5;6)
D. (- 5;5;- 6)
A. \(M\left( {\frac{2}{3}; - \frac{4}{3};{\rm{ }}1} \right)\)
B. \(M\left( {\frac{1}{2}; - \frac{3}{2};{\rm{ }}\frac{1}{2}} \right)\)
C. \(M\left( {2;{\rm{ }}0;{\rm{ }}5} \right)\)
D. \(M\left( { - 1; - 3; - 4} \right)\)
A. MN = 10
B. MN = 5
C. MN = 1
D. MN = 7
A. \(\left( \gamma \right)//Oz\)
B. \(\left( \beta \right)//\left( {Oxz} \right)\)
C. \(\left( \alpha \right)\,qua\,I\)
D. \(\left( \alpha \right) \bot \left( \beta \right)\)
A. \(135^0\)
B. \(45^0\)
C. \(60^0\)
D. \(120^0\)
A. S = 1
B. \(S = \frac{1}{2}\)
C. \(S = \sqrt 3 \)
D. \(S = \sqrt 2 \)
A. \(\frac{1}{3}.\)
B. \(\frac{2}{3}.\)
C. \(\frac{4}{3}.\)
D. \(\frac{8}{3}.\)
A. \(2x - y + 3z - 11 = 0.\)
B. \(2x - y + 3z = 0.\)
C. \(2x - y + 3z + 1 = 0.\)
D. \(2x - y + 3z + 11 = 0.\)
A. \(x + 2y - z = 0.\)
B. \(x - 2y + z - 4 = 0.\)
C. \(x - 2y - z = 0.\)
D. \(x + 2y + z - 4 = 0.\)
A. \(x - y + 2z + 9 = 0.\)
B. \(x - y + 2z - 9 = 0.\)
C. \(2x + 3y - 6z - 19 = 0.\)
D. \(2x + 3y + 6z - 19 = 0.\)
A. \(x + \frac{y}{2} - \frac{z}{5} = 1\)
B. \(x + 2z - 5z + 1 = 0\)
C. \(x + 2y - 5z = 1\)
D. \(x + \frac{y}{2} - \frac{z}{5} + 1 = 0\)
A. \(\left( {ABC} \right):x + y - z + 1 = 0\)
B. \(\left( {ABC} \right):x - y - z + 1 = 0\)
C. \(\left( {ABC} \right):x + y + z - 3 = 0\)
D. \(\left( {ABC} \right):x + y - 2{\rm{z}} - 3 = 0\)
A. \(2x + 3y + 4z - 24 = 0.\)
B. \(\frac{x}{{ - 12}} + \frac{y}{{ - 8}} + \frac{z}{{ - 6}} = 1.\)
C. \(\frac{x}{6} + \frac{y}{4} + \frac{z}{3} = 1.\)
D. \(x + y + z - 26 = 0.\)
A. \( - 4x - 2y + 6z + 7 = 0; 4x + 2y - 6z + 15 = 0\)
B. \( - 4x - 2y + 6z - 7 = 0; 4x + 2y - 6z + 5 = 0\)
C. \( - 4x - 2y + 6z + 5 = 0; 4x + 2y - 6z - 15 = 0\)
D. \( - 4x - 2y + 6z + 3 = 0; 4x + 2y - 6z - 15 = 0\)
A. \(\left( P \right):2x - 2y + z - 8 = 0.\)
B. \(\left( P \right): - 2x + 11y - 10z - 105 = 0.\)
C. \(\left( P \right):2x - 11y + 10z - 35 = 0.\)
D. \(\left( P \right): - 2x + 2y - z + 11 = 0.\)
A. \(7x + y - 5z - 77 = 0.\)
B. \(2x + y + 3z - 19 = 0.\)
C. \(7x + y - 5z - 7 = 0.\)
D. \(x + y + z - 4 = 0.\)
A. \(15x - 7y + 7z - 16 = 0\;\)
B. \(15x + 7y - 7z - 14{\rm{ = }}0\)
C. \(9x - 6y + z + 8 = 0\)
D. \(9x + 6y - z - 25 = 0\)
A. \(\frac{x}{3} + \frac{y}{2} + \frac{z}{1} = 0\)
B. \(x + y + z - 6 = 0\)
C. \(3x + 2y + z - 14 = 0\)
D. \(\frac{x}{3} + \frac{y}{2} + \frac{z}{1} = 1\)
A. \(\left( P \right):x + 2y + 3z - 8 = 0\)
B. \(\left( P \right):x + y + z - 4 = 0\)
C. \(\left( P \right):x + 2y + z - 6 = 0\)
D. \(\left( P \right):\frac{x}{1} + \frac{y}{2} + \frac{z}{1} = 1\)
A. \(\left( P \right):\frac{x}{3} + \frac{y}{6} + \frac{z}{9} = 1\)
B. \(\left( P \right):x + \frac{y}{2} + \frac{z}{3} = 3\)
C. \(\left( P \right):x + y + z - 6 = 0\)
D. \(\left( P \right):x + 2y + 3{\rm{z}} - 14 = 0\)
A. \(x + y + 2z - 11 = 0\;\)
B. \(8x + y + z - 66{\rm{ = }}0\)
C. \(2x + y + z - 18 = 0\)
D. \(x + 2y + 2z - 12 = 0\)
A. \(2x - 3y + 4z - 3 = 0.\)
B. \(2x - 3y + 4z + 3 = 0.\)
C. \(2x - 3y + 4z \pm 12 = 0.\)
D. \(2x - 3y + 4z \pm 6 = 0.\)
A. \(x - z + 3 = 0.\)
B. \(x + y - z + 2 = 0.\)
C. \(x - y - z + 3 = 0.\)
D. \(y - z + 4 = 0.\)
A. \(\frac{{x + 1}}{{ - 4}} = \frac{{y + 2}}{{ - 4}} = \frac{{z + 1}}{{ - 4}}.\)
B. \(\frac{{x - 1}}{2} = \frac{{y - 2}}{4} = \frac{{z - 1}}{{ - 4}}.\)
C. \(\frac{{x - 1}}{1} = \frac{{y - 2}}{{ - 1}} = \frac{{z - 1}}{1}.\)
D. \(\frac{{x - 1}}{1} = \frac{{y - 2}}{1} = \frac{{z - 1}}{1}.\)
A. \(\frac{{x - 1}}{1} = \frac{{y - 2}}{3} = \frac{{z - 3}}{{ - 5}}.\)
B. \(\frac{{x - 1}}{1} = \frac{{y - 2}}{{ - 3}} = \frac{{z - 3}}{{ - 5}}.\)
C. \(\frac{{x - 1}}{1} = \frac{{y - 2}}{3} = \frac{{z - 3}}{5}.\)
D. \(\frac{{x - 1}}{{ - 1}} = \frac{{y - 2}}{{ - 3}} = \frac{{z - 3}}{{ - 5}}.\)
A. \(I\left( {3; - 1;2} \right),R = 4.\)
B. \(I\left( { - 3;1; - 2} \right),R = 4.\)
C. \(I\left( {6; - 2;4} \right),R = \sqrt {58} .\)
D. \(I\left( {3;1;2} \right),R = 4.\)
A. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 62\)
B. \({\left( {x - 5} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 6} \right)^2} = 62\)
C. \({\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 1} \right)^2} = 62\)
D. \({\left( {x + 5} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 6} \right)^2} = 62\)
A. \({\left( {x + 1} \right)^2} + {y^2} + {z^2} = \sqrt 5 \)
B. \({\left( {x - 1} \right)^2} + {y^2} + {z^2} = 5\)
C. \({\left( {x - 1} \right)^2} + {y^2} + {z^2} = \sqrt 5 \)
D. \({\left( {x + 1} \right)^2} + {y^2} + {z^2} = 5\)
A. (- 2;1;0)
B. (2; - 1;0)
C. (0;0;1)
D. (0;0;- 2)
A. 3
B. \(\frac{{39}}{{\sqrt {13} }}\)
C. 13
D. 39
A. \({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 1} \right)^2} = 3\)
B. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 3\)
C. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 9\)
D. \({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 1} \right)^2} = 9\)
A. \(I\left( {5;2;10} \right),{\rm{ }}I\left( {0; - 3;0} \right)\)
B. \(I\left( {1; - 2;2} \right),{\rm{ }}I\left( {0; - 3;0} \right)\)
C. \(I\left( {1; - 2;2} \right),{\rm{ }}I\left( {5;2;10} \right)\)
D. \(I\left( {1; - 2;2} \right),{\rm{ }}I\left( { - 1;2; - 2} \right)\)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247