Trong không gian với hệ toạ độ Oxyz, cho 2 điểm \(A\left( {1;2;1} \right),B\left( {3; - 1;5} \right)\).

Câu hỏi :

Trong không gian với hệ toạ độ Oxyz, cho 2 điểm \(A\left( {1;2;1} \right),B\left( {3; - 1;5} \right)\). Phương trình mặt phẳng (P) vuông góc với AB và hợp với các trục tọa độ một tứ diện có thể tích bằng \(\frac{3}{2}\) là

A. \(2x - 3y + 4z - 3 = 0.\)

B. \(2x - 3y + 4z + 3 = 0.\)

C. \(2x - 3y + 4z \pm 12 = 0.\)

D. \(2x - 3y + 4z \pm 6 = 0.\)

* Đáp án

D

* Hướng dẫn giải

Ta có \(\overrightarrow {AB}  = \left( {2; - 3;4} \right) \Rightarrow \left( P \right):2x - 3y + 4z + m = 0\). Gọi M, N, P lần lượt là giao điểm của mặt phẳng (P) với trục Ox, Oy, Oz; suy ra \(M\left( { - \frac{m}{2};0;0} \right),N\left( {0;\frac{m}{3};0} \right),P\left( {0;0; - \frac{m}{4}} \right)\).

Ta có thể tích tứ diện \({V_{O.MNP}} = \frac{1}{6}\left| {\frac{{{m^3}}}{{24}}} \right| = \frac{3}{2} \Leftrightarrow m =  \pm 6.\)

Copyright © 2021 HOCTAP247