Gọi S là tập hợp tất cả các giá trị của tham số m đồ thị (C) của hàm số \(y = {x^4} - 2{m^2}{x^2} + {m^4} + 5\) có

Câu hỏi :

Gọi S là tập hợp tất cả các giá trị của tham số m đồ thị (C) của hàm số \(y = {x^4} - 2{m^2}{x^2} + {m^4} + 5\) có ba cực trị, đồng thời ba điểm cực trị với gốc tọa độ tạo thành một tứ giác nội tiếp. Tìm số phần tử của S.

A. 3

B. 2

C. 1

D. 0

* Đáp án

B

* Hướng dẫn giải

Ta có:

\(y = {x^4} - 2{m^2}{x^2} + {m^4} + 5 \Rightarrow y' = 4{x^3} - 4{m^2}x \Rightarrow y' = 0 \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
x = m\\
x =  - m
\end{array} \right.\) 

Để đồ thị hàm số có 3 điểm cực trị thì \(m \ne 0.\) 

Khi đó, tọa độ ba điểm cực trị là: \(A\left( {0;{m^4} + 5} \right),B( - m;5),C(m;5)\) 

Dễ dàng chứng minh: \(\Delta ABO = \Delta ACO \Rightarrow \angle B = \angle C\) 

Mà  tứ giác ABOC nội tiếp, nên \(\angle B + \angle C = {180^0} \Rightarrow \angle B = \angle C = {90^0}\) 

Khi đó, \(\overrightarrow {AB} .\overrightarrow {OB}  = 0 \Leftrightarrow ( - m).( - m) + ( - {m^4}).5 = 0 \Leftrightarrow  - 5{m^4} + {m^2} = 0 \Leftrightarrow {m^2}\left( {1 - 5{m^2}} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}
m = 0(ktm)\\
m =  \pm \frac{1}{{\sqrt 5 }}(tm)
\end{array} \right.\) 

Vậy tập hợp S tất cả các giá trị của tham số m thỏa mãn yêu cầu đề bài có 2 phần tử là \( \pm \frac{1}{{\sqrt 5 }}.\) 

Copyright © 2021 HOCTAP247