A. \(h\left( 6 \right),h\left( 2 \right)\)
B. \(h\left( 0 \right),h\left( 2 \right)\)
C. \(h\left( 2 \right),h\left( 6 \right)\)
D. \(h\left( 2 \right),h\left( 0 \right)\)
C
Xét hàm số \(h\left( x \right) = f\left( x \right) - g\left( x \right),\) ta có: \(h'\left( x \right) = f'\left( x \right) - g'\left( x \right)\)
Dựa vào đồ thị ta có: \(\left\{ \begin{array}{l}
h'\left( x \right) = f'\left( x \right) - g'\left( x \right) < 0,\forall x \in \left( {0;2} \right)\\
h'\left( x \right) = f'\left( x \right) - g'\left( x \right) > 0,\forall x \in \left( {2;6} \right)
\end{array} \right.\)
Ta có bảng biến thiên sau:
Lại có: \(f\left( 0 \right) - f\left( 6 \right) < g\left( 0 \right) - g\left( 6 \right) \Leftrightarrow f\left( 0 \right) - g\left( 0 \right) < f\left( 6 \right) - g\left( 6 \right) \Leftrightarrow h\left( 0 \right) < h\left( 6 \right)\)
\( \Rightarrow \mathop {\min }\limits_{[0;6]} h\left( x \right) = h(2);\mathop {\max }\limits_{[0;6]} h\left( x \right) = \max \left\{ {h(0);h(6)} \right\} = h(6).\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247