A. 3
B. 1
C. 2
D. 4
C
Phương pháp:
Gọi số phức đó là \(z = a + bi,\left( {a,b \in R} \right).\) Tìm điều kiện của \(a, b\)
Cách giải:
Gọi số phức đó là \(z = a + bi,\left( {a,b \in R} \right).\)Ta có:
\(\left| {z - 2i} \right| = \sqrt 2 \Leftrightarrow \left| {a + bi - 2i} \right| = \sqrt 2 \Leftrightarrow {a^2} + {\left( {b - 2} \right)^2} = 2\left( 1 \right)\)
\({z^2} = {\left( {a + bi} \right)^2} = \left( {{a^2} - {b^2}} \right) + 2abi\) là số thuần ảo \( \Rightarrow {a^2} - {b^2} = 0 \Leftrightarrow \left[ \begin{array}{l}
a = b\\
a = - b
\end{array} \right.\)
+) \(a=b\) Thay vào (1): \({a^2} + {\left( {a - 2} \right)^2} = 2 \Leftrightarrow 2{a^2} - 4a + 2 = 0 \Leftrightarrow a = 1 = b \Rightarrow z = 1 + i\)
+) \(a=-b\) Thay vào (1): \({a^2} + {\left( { - a - 2} \right)^2} = 2 \Leftrightarrow 2{a^2} + 4a + 2 = 0 \Leftrightarrow a = - 1,b = 1 \Rightarrow z = - 1 + i\)
Vậy, có 2 số phức z thỏa mãn yêu cầu đề bài.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247