Cho hàm số \(f(x)\) có đạo hàm trên R thỏa mãn \(f\left( x \right) - 2018f\left( x \right) = 2018{x^{2017}}{e^{2018x}}\) với m

Câu hỏi :

Cho hàm số \(f(x)\) có đạo hàm trên R thỏa mãn \(f'\left( x \right) - 2018f\left( x \right) = 2018{x^{2017}}{e^{2018x}}\) với mọi \(x \in R,f\left( 0 \right) = 2018.\) Tính \(f(1)\) 

A. \(f\left( 1 \right) = 2019{e^{2018}}\)

B. \(f\left( 1 \right) = 2019{e^{ - 2018}}\)

C. \(f\left( 1 \right) = 2017{e^{2018}}\)

D. \(f\left( 1 \right) = 2018{e^{2018}}\)

* Đáp án

A

* Hướng dẫn giải

Ta có: \(f'\left( x \right) - 2018f\left( x \right) = 2018{x^{2017}}{e^{2018x}} \Leftrightarrow {e^{ - 2018x}}f'\left( x \right) - 2018{e^{ - 2018x}}f\left( x \right) = 2018{x^{2017}}\) 

\( \Rightarrow {\left( {{e^{ - 2018x}}f\left( x \right)} \right)^\prime } = 2018{x^{2017}} \Rightarrow {e^{ - 2018x}}f\left( x \right)\) là 1 nguyên hàm của \(2018{x^{2017}}\) 

Ta có: \(\int {2018{x^{2017dx}}}  = {x^{2018}} + C \Rightarrow {e^{ - 2018x}}f\left( x \right) = {x^{2018}} + {C_0}\) 

Mà \(f\left( 0 \right) = 2018 \Rightarrow 2018 = {C_0} \Rightarrow {e^{ - 2018x}}f\left( x \right) = {x^{2018}} + 2018 \Leftrightarrow f\left( x \right) = {x^{2018}}{e^{2018x}} + 2018{e^{2018x}}\) 

\( \Rightarrow f\left( 1 \right) = {e^{2018}} + 2018{e^{2018}} = 2019{e^{2018}}\) 

Copyright © 2021 HOCTAP247