Tính tích phân \(I = \int\limits_0^{\rm{\pi }} {x\cos x{\rm{d}}x} \) bằng cách đặt \(\left\{ \begin{array}{l}u = x\\{\rm{d}}v = \cos x

Câu hỏi :

Tính tích phân \(I = \int\limits_0^{\rm{\pi }} {x\cos x{\rm{d}}x} \) bằng cách đặt \(\left\{ \begin{array}{l}
u = x\\
{\rm{d}}v = \cos x{\rm{d}}x
\end{array} \right.\). Mệnh đề nào dưới đây đúng?

A. \(I = x\sin x\left| {{}_0^{\rm{\pi }}} \right. + \int\limits_0^{\rm{\pi }} {\sin x{\rm{d}}x} \)

B. \(I = x\sin x\left| {{}_0^{\rm{\pi }}} \right. - \int\limits_0^{\rm{\pi }} {\sin x{\rm{d}}x} \)

C. \(I = x\sin x\left| {{}_0^{\rm{\pi }}} \right. - \int\limits_0^{\rm{\pi }} {\cos x{\rm{d}}x} \)

D. \(I = x\cos x\left| {{}_0^{\rm{\pi }}} \right. - \int\limits_0^{\rm{\pi }} {\sin x{\rm{d}}x} \)

* Đáp án

B

Copyright © 2021 HOCTAP247