A. \(I = {{\rm{e}}^3} - 1\)
B. \(I=e-1\)
C. \(I = \frac{{{{\rm{e}}^3} - 1}}{3}\)
D. \(I = {{\rm{e}}^3} + \frac{1}{2}\)
A. \({x^2} + 2\cos 2x + C\)
B. \({x^2} + \frac{1}{2}\cos 2x + C\)
C. \({x^2} - \frac{1}{2}\cos 2x + C\)
D. \({x^2} - 2\cos 2x + C\)
A. I = 11
B. I = 7
C. I = 2
D. I = 18
A. \(\int\limits_a^b {kf\left( x \right){\rm{d}}x} = k\int\limits_a^b {f\left( x \right){\rm{d}}x} \)
B. \(\int\limits_a^b {f\left( x \right)g\left( x \right){\rm{d}}x} = \int\limits_a^b {f\left( x \right){\rm{d}}x} .\int\limits_a^b {g\left( x \right){\rm{d}}x} \)
C. \(\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]{\rm{d}}x} = \int\limits_a^b {f\left( x \right){\rm{d}}x} + \int\limits_a^b {g\left( x \right){\rm{d}}x} \)
D. \(\int\limits_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]{\rm{d}}x} = \int\limits_a^b {f\left( x \right){\rm{d}}x} - \int\limits_a^b {g\left( x \right){\rm{d}}x} \)
A. \(I = \int\limits_0^{\rm{1}} {\frac{t}{{{{\rm{e}}^t}}}\,{\rm{d}}t} \)
B. \(I = \int\limits_0^1 {{t^2}\,{\rm{d}}t} \)
C. \(I = \int\limits_0^{\rm{1}} {t\,{\rm{d}}t} \)
D. \(I = \int\limits_1^{\rm{e}} {t\,{\rm{d}}t} \)
A. \(S = \frac{8}{3}\)
B. \(S = \frac{7}{3}\)
C. S = 8
D. S = 7
A. \(\int {f\left( x \right){\rm{d}}x = - \sin x + C} \)
B. \(\int {f\left( x \right){\rm{d}}x = - \cos x + C} \)
C. \(\int {f\left( x \right){\rm{d}}x = \cos x + C} \)
D. \(\int {f\left( x \right){\rm{d}}x = \sin x + C} \)
A. \(\int\limits_a^b {{f^2}\left( x \right)\,{\rm{d}}x} \,\)
B. \(2\pi \int\limits_a^b {{f^2}\left( x \right)\,{\rm{d}}x} \,\)
C. \(\pi \int\limits_a^b {{f^2}\left( x \right)\,{\rm{d}}x} \,\)
D. \(\pi \int\limits_a^b {{f}\left( x \right)\,{\rm{d}}x} \,\)
A. \(I = 2\int {tdt} \)
B. \(I = \frac{1}{2}\int {tdt} \)
C. \(I = \int {\left( {t + 1} \right)dt} \)
D. \(I = \int {tdt} \)
A. \(\int\limits_a^b {f\left( x \right){\rm{d}}x} = \int\limits_b^a {f\left( x \right){\rm{d}}x} \)
B. \(\int\limits_a^b {f\left( x \right){\rm{d}}x} = \int\limits_a^c {f\left( x \right){\rm{d}}x} + \int\limits_c^b {f\left( x \right){\rm{d}}x} \) với \(c \in \left[ {a;b} \right]\)
C. \(\int\limits_a^b {k{\rm{d}}x} = k\left( {b - a} \right)\), \(\forall k \in R\)
D. \(\int\limits_a^b {f\left( x \right){\rm{d}}x} = - \int\limits_b^a {f\left( x \right){\rm{d}}x} \)
A. \(I = x\sin x\left| {{}_0^{\rm{\pi }}} \right. + \int\limits_0^{\rm{\pi }} {\sin x{\rm{d}}x} \)
B. \(I = x\sin x\left| {{}_0^{\rm{\pi }}} \right. - \int\limits_0^{\rm{\pi }} {\sin x{\rm{d}}x} \)
C. \(I = x\sin x\left| {{}_0^{\rm{\pi }}} \right. - \int\limits_0^{\rm{\pi }} {\cos x{\rm{d}}x} \)
D. \(I = x\cos x\left| {{}_0^{\rm{\pi }}} \right. - \int\limits_0^{\rm{\pi }} {\sin x{\rm{d}}x} \)
A. \(I = \frac{1}{2}a + 1\)
B. \(I=2a+1\)
C. \(I=2a\)
D. \(I = \frac{1}{2}a\)
A. \(\frac{\pi }{2}\left( {{e^2} - 1} \right)\)
B. \(\pi \left( {{e^2} + 1} \right)\)
C. \(\frac{\pi }{2}\left( {{e^2} + 1} \right)\)
D. \(\pi \left( {{e^2} - 1} \right)\)
A. \(\int\limits_a^b {\left| {f\left( x \right)} \right|dx} \)
B. \(\pi \int\limits_a^b {f\left( x \right)dx} \)
C. \(\int\limits_a^b {{f^2}\left( x \right)dx} \)
D. \(\int\limits_a^b {f\left( x \right)dx} \)
A. \((I = {e^x} + x{e^x} + C\)
B. \(I = x{e^x} - {e^x} + C\)
C. \(I = \frac{{{x^2}}}{2}{e^x} + C\)
D. \(I = \frac{{{x^2}}}{2}{e^x} + {e^x} + C\)
A. 40 m
B. 80 m
C. 60 m
D. 20 m
A. \(a-b=1\)
B. \(2a+b=1\)
C. \(a+2b=0\)
D. \({a^2} + {b^2} = 4\)
A. \(F\left( x \right) = \left( {x + 1} \right){{\rm{e}}^{ - x}} + 2\)
B. \(F\left( x \right) = - \left( {x + 1} \right){{\rm{e}}^{ - x}} + 2\)
C. \(F\left( x \right) = - \left( {x + 1} \right){{\rm{e}}^{ - x}} + 1\)
D. \(F\left( x \right) = \left( {x + 1} \right){{\rm{e}}^{ - x}} + 1\)
A. \(\ln 2\)
B. 3
C. 4
D. \(2+\ln 2\)
A. M = 28
B. M = 34
C. M = 14
D. M = 8
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247