Ta có \(F\left( x \right) = \int {f\left( x \right)dx = } \int {x\ln \left( {x + 1} \right)dx} = I\)
Đặt \(\left\{ \begin{array}{l}
u = \ln \left( {x + 1} \right)\\
dv = xdx
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
du = \frac{1}{{x + 1}}dx\\
v = \frac{{{x^2}}}{2}
\end{array} \right.\)
\(\begin{array}{l}
\Rightarrow I = \frac{{{x^2}}}{2}.\ln \left( {x + 1} \right) - \frac{1}{2}\int {\frac{{{x^2}}}{{x + 1}}dx} + C = \frac{{{x^2}}}{2}.\ln \left( {x + 1} \right) - \frac{1}{2}\int {\frac{{{x^2} - 1 + 1}}{{x + 1}}dx} \\
= \frac{{{x^2}}}{2}.\ln \left( {x + 1} \right) - \frac{1}{2}\int {\left( {x - 1 + \frac{1}{{x + 1}}} \right)} dx + C\\
= \frac{{{x^2}}}{2}.\ln \left( {x + 1} \right) - \frac{1}{2}\left( {\frac{{{x^2}}}{2} - x + \ln \left( {x + 1} \right)} \right) + C
\end{array}\)
Với \(F(0)=0 \Rightarrow C = 0\)
\(\begin{array}{l}
F\left( 2 \right) = a\ln b \Leftrightarrow \frac{3}{2}\ln 3 = a\ln b \Rightarrow \left\{ \begin{array}{l}
a = \frac{3}{2}\\
b = 3
\end{array} \right.\\
\Rightarrow P = a + b = \frac{9}{2}
\end{array}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247