A. \(\frac{{\sqrt 3 }}{2}\)
B. \(\frac{{\sqrt 3 }}{6}\)
C. \(\frac{{\sqrt 3 }}{3}\)
D. 1/2
B
Gọi N là trung điểm của AC. Khi đó, AB // MN nên \(\left( {DM,AB} \right) = \left( {DM,MN} \right)\)
Dễ dàng tính được \(DM = DN = \frac{{a\sqrt 3 }}{2}\) và \(MN = \frac{a}{2}\)
Trong tam giác DMN, ta có \(\cos DMN = \frac{{D{M^2} + M{N^2} - D{N^2}}}{{2DM.MN}} = \frac{{\frac{{{a^2}}}{4}}}{{2.\frac{{a\sqrt 3 }}{2}.\frac{a}{2}}} = \frac{{\sqrt 3 }}{6}\)
Vì \(\cos DMN = \frac{{\sqrt 3 }}{6} > 0\) nên \(\cos \left( {DM,MN} \right) = \frac{{\sqrt 3 }}{6}\)
Vậy \(\cos \left( {DM,AB} \right) = \frac{{\sqrt 3 }}{6}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247