Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số \(y =  - 3{x^2} + x + 4\) và trục hoành.

Câu hỏi :

Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số \(y =  - 3{x^2} + x + 4\) và trục hoành. Gọi \(S_1\) và \(S_2\) lần lượt là diện tích phần hình (H) nằm bên trái và bên phải trục tung. Tính tỉ số \(\frac{{{S_1}}}{{{S_2}}}\).

A. \(\frac{{{S_1}}}{{{S_2}}} = \frac{{135}}{{208}}.\)

B. \(\frac{{{S_1}}}{{{S_2}}} = \frac{{135}}{{343}}.\)

C. \(\frac{{{S_1}}}{{{S_2}}} = \frac{{208}}{{343}}.\)

D. \(\frac{{{S_1}}}{{{S_2}}} = \frac{{54}}{{343}}.\)

* Đáp án

A

* Hướng dẫn giải

Ta có: \( - 3{x^2} + x + 4 = 0 \Leftrightarrow \left[ \begin{array}{l}
x =  - 1\\
x = \frac{4}{3}
\end{array} \right.\) 

Khi đó:

\({S_1} = \int\limits_{ - 1}^0 {\left| { - 3{x^2} + x + 4} \right|dx = } \int\limits_{ - 1}^0 {\left( { - 3{x^2} + x + 4} \right)dx = \left( { - {x^3} + \frac{1}{2}{x^2} + 4x} \right)\left| \begin{array}{l}
^0\\
_{ - 1}
\end{array} \right. = 0 - \left( {1 + \frac{1}{2} - 4} \right) = \frac{5}{2}} \) 

\({S_2} = \int\limits_0^{\frac{4}{3}} {\left| { - 3{x^2} + x + 4} \right|dx = } \int\limits_0^{\frac{4}{3}} {\left( { - 3{x^2} + x + 4} \right)dx = \left( { - {x^3} + \frac{1}{2}{x^2} + 4x} \right)\left| \begin{array}{l}
^{\frac{4}{3}}\\
_0
\end{array} \right. = \left( { - \frac{{64}}{{27}} + \frac{8}{9} + \frac{{16}}{3}} \right) - 0 = \frac{{104}}{{27}}} \) 

\(\frac{{{S_1}}}{{{S_2}}} = \frac{{135}}{{208}}\) 

Copyright © 2021 HOCTAP247