Cho x, y là các số thực dương thỏa mãn 5^(x+2y) + 3/(3^xy) + x +1

Câu hỏi :

Cho x, y là các số thực dương thỏa mãn 5x+2y+33xy-xy+1=5xy5+3-x-2y-x+2yTìm giá trị nhỏ nhất của biểu thức T = x + y.

* Đáp án

C

* Hướng dẫn giải

Đáp án C.

Ta có: GT

<=> 5x+2y + x + 2y – 3–x–2y = 5xy–1 – 31–xy + xy – 1.

Xét hàm s ft=5t+t-3-t

ft=5tln5+1+3-tln3>0 t

Do đó hàm số đồng biến trên  suy ra

f(x+2y) = f(xy – 1) <=> x+ 2y = xy – 1

x=2y+1y-1T=2y+1y-1+y.

Do x > 0 => y > 1.

Ta có:

T=2+y+3y-1=3+y-1+3y-13+23.

Copyright © 2021 HOCTAP247