A. \(\int\limits_a^b {f\left( x \right)dx = \frac{{{b^6} - {a^6}}}{6}} \)
B. \(\int\limits_a^b {f\left( x \right)dx = 6\left( {{b^6} - {a^6}} \right)} \)
C. \(\int\limits_a^b {f\left( x \right)dx = \frac{{{b^7} - {a^7}}}{{42}}} \)
D. \(\int\limits_a^b {f\left( x \right)dx = {b^5} - {a^5}} \)
C
Ta có \(f\left( x \right) = \int {f'\left( x \right)dx} = \int {{x^5}dx = \frac{{{x^6}}}{6} + C} \)
\(\begin{array}{l}
\Rightarrow f\left( 0 \right) = 0 \Leftrightarrow C = 0 \Rightarrow f\left( x \right) = \frac{{{x^6}}}{6}\\
\Rightarrow \int\limits_a^b {f\left( x \right)dx = \int\limits_a^b {\frac{{{x^6}}}{6}dx} } = \frac{{{x^7}}}{{42}}\left| \begin{array}{l}
^b\\
_a
\end{array} \right. = \frac{{{b^7} - {a^7}}}{{42}}
\end{array}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247