Tìm số các số nguyên m để hàm số \(y = 3\sin x + 4\cos x - \left( {\left| m \right| - 6} \right)x\) đồng biến trên tập số thực

Câu hỏi :

Số các số nguyên m để hàm số \(y = 3\sin x + 4\cos x - \left( {\left| m \right| - 6} \right)x\) đồng biến trên tập số thực là

A. 1

B. 4

C. 2

D. 3

* Đáp án

D

* Hướng dẫn giải

Ta có: \(y' = 3\cos x - 4\sin x - \left( {\left| m \right| - 6} \right)\) 

Hàm số đã cho đồng biến trên \(R \Leftrightarrow y' \ge 0\,\,\forall x \in R\) 

\(\begin{array}{l}
 \Leftrightarrow 3\cos x - 4\sin x - \left( {\left| m \right| - 6} \right) \ge 0\,\,\forall x \in R\\
 \Leftrightarrow 3\cos x - 4\sin x + 6 \ge \left| m \right|\,\,\,\forall x \in R\,\,\left( * \right)
\end{array}\) 

Đặt \(f\left( x \right) = 3\cos x - 4\sin x + 6 \Rightarrow \left( * \right) \Leftrightarrow \left| m \right| \le \mathop {\min }\limits_ f\left( x \right)\) 

Ta có: \(f\left( x \right) = 3\cos x - 4\sin x + 6 = 5\left( {\frac{3}{5}\cos x - \frac{4}{5}\sin x} \right) + 6 = 5\cos \left( {x + \alpha } \right) + 6\)

Với \(\cos \alpha  = \frac{3}{5},\sin \alpha  = \frac{4}{5}\).

Vì \( - 1 \le \cos \left( {x + \alpha } \right) \le 1 \Rightarrow  - 5 \le 5\cos \left( {x + \alpha } \right) \le 5 \Rightarrow 1 \le f\left( x \right) \le 11\) 

 \( \Rightarrow \left( * \right) \Leftrightarrow \left| m \right| \le 1 \Leftrightarrow  - 1 \le m \le 1 \Rightarrow m \in \left\{ { - 1;0;1} \right\}\).

Copyright © 2021 HOCTAP247