Cho hình chóp S.ABCD có đáy là hình chữ nhật, SA vuông góc với mặt phẳng (ABCD). Gọi H, K lần lượt là hình chiếu vuông góc của A lên các đường thẳng SB và SD. Biết \(HAK = {40^0}\)...

Câu hỏi :

Cho hình chóp S.ABCD có đáy là hình chữ nhật, SA vuông góc với mặt phẳng (ABCD). Gọi H, K lần lượt là hình chiếu vuông góc của A lên các đường thẳng SB và SD. Biết \(HAK = {40^0}\). Góc giữa hai mặt phẳng (SBC) và (SCD) bằng  

A. \(40^0\)

B. \(20^0\)

C. \(80^0\)

D. \(50^0\)

* Đáp án

A

* Hướng dẫn giải

Gọi \(O = AC \cap BD\), trong (SBD) gọi \(I = HK \cap SO\), trong (SAC) gọi

\(M = AI \cap SC\).

Khi đó ta có \(\left( {AHK} \right) \equiv \left( {AHMK} \right)\) 

Ta có:

\(\begin{array}{l}
\left\{ \begin{array}{l}
BC \bot AB\\
BC \bot SA
\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right) \Rightarrow BC \bot AH\\
\left\{ \begin{array}{l}
AH \bot BC\\
AH \bot SB
\end{array} \right. \Rightarrow AH \bot \left( {SBC} \right) \Rightarrow AH \bot SC
\end{array}\) 

Hoàn toàn tương tự ta chứng minh được \(AK \bot SC \Rightarrow SC \bot \left( {AHMK} \right) \Rightarrow \left\{ \begin{array}{l}
SC \bot HM\\
SC \bot KM
\end{array} \right.\) 

\(\left\{ \begin{array}{l}
\left( {SBC} \right) \cap \left( {SCD} \right) = SC\\
\left( {SBC} \right) \supset HM \bot SC\\
\left( {SCD} \right) \supset KM \bot SC
\end{array} \right. \Rightarrow \angle \left( {\left( {SBC} \right);\left( {SCD} \right)} \right) = \angle \left( {HM;KM} \right) = \angle HMK\)   

Ta có: \(AH \bot \left( {SBC} \right) \Rightarrow AH \bot HM \Rightarrow \angle AHM = {90^0}\). Tương tự ta có \(\angle AKM = {90^0}\).

Xét tứ giác AHMK có: 

\(\angle HAK + \angle AHM + \angle AKM + \angle HMK = {360^0} \Leftrightarrow \angle HMK = {360^0} - {40^0} - {90^0} - {90^0} = {140^0} > {90^0}\).

Vậy \(\angle \left( {HM;KM} \right) = {180^0} - {140^0} = {40^0} \Rightarrow \angle \left( {\left( {SBC} \right);\left( {SCD} \right)} \right) = {40^0}\).  

Copyright © 2021 HOCTAP247