Diện tích hình phẳng giới hạn bởi các đồ thị \(y = \frac{{\left| x \right|}}{{x + 5}},x =  - 2,x = 2\) và trục hoành l

Câu hỏi :

Diện tích hình phẳng giới hạn bởi các đồ thị \(y = \frac{{\left| x \right|}}{{x + 5}},x =  - 2,x = 2\) và trục hoành là:

A. \(15\ln 10 - 10\ln 5\)

B. \(10\ln 5 - 5\ln 21\)

C. \(5\ln 21 - \ln 5\)

D. \(121\ln 5 - 5\ln 21\)

* Đáp án

B

* Hướng dẫn giải

Xét phương trình hoành độ giao điểm: \(\frac{{\left| x \right|}}{{x + 5}} = 0 \Leftrightarrow \left| x \right| = 0 \Leftrightarrow x = 0\) 

Diện tích hình phẳng giới hạn bởi các đồ thị \(y = \frac{{\left| x \right|}}{{x + 5}},x =  - 2,x = 2\) và trục hoành là:

\(\begin{array}{l}
S = \int\limits_{ - 2}^0 {\left| {\frac{{\left| x \right|}}{{x + 5}}} \right|dx + \int\limits_0^2 {\left| {\frac{{\left| x \right|}}{{x + 5}}} \right|dx = } \int\limits_{ - 2}^0 {\left| {\frac{{ - x}}{{x + 5}}} \right|dx + } } \int\limits_0^2 {\left| {\frac{x}{{x + 5}}} \right|dx} \\
 = \int\limits_{ - 2}^0 {\frac{{ - x}}{{x + 5}}dx + \int\limits_0^2 {\frac{x}{{x + 5}}dx} }  = \int\limits_{ - 2}^0 {\left( { - 1 + \frac{5}{{x + 5}}} \right)dx + \int\limits_0^2 {\left( {1 - \frac{5}{{x + 5}}} \right)dx} } \\
 = \left( { - x + 5\ln \left| {x + 5} \right|} \right)\left| \begin{array}{l}
^0\\
_{ - 2}
\end{array} \right. + \left( {x - 5\ln \left| {x + 5} \right|} \right)\left| \begin{array}{l}
^2\\
_0
\end{array} \right.\\
 = 5\ln 5 - \left( {2 + 5\ln 3} \right) + \left( {2 - 5\ln 7} \right) - \left( {0 - 5\ln 5} \right)\\
 = 5\left( {\ln 5 - \ln 3 - \ln 7 + \ln 5} \right) = 10\ln 5 - 5\ln 21
\end{array}\) 

Copyright © 2021 HOCTAP247