A. \(I \approx 6,55\)
B. \(I \approx 17,30\)
C. \(I \approx 10,31\)
D. \(I \approx 16,91\)
C
\(\begin{array}{l}
f'\left( x \right) + \sin \,xf\left( x \right) = \cos x{e^{\cos x}}\,\,\,\forall x \in \left[ {0;\pi } \right]\\
\Leftrightarrow f'\left( x \right){e^{ - \cos x}} + \sin \,xf\left( x \right){e^{ - \cos x}} = \cos x\\
\Leftrightarrow \left[ {f\left( x \right){e^{ - \cos x}}} \right]' = \cos x\\
\Leftrightarrow \int\limits_0^x {\left[ {f\left( x \right){e^{ - \cos x}}} \right]dx = \int\limits_0^x {\cos xdx} } \\
\Leftrightarrow f\left( x \right){e^{ - \cos x}}\left| \begin{array}{l}
^x\\
_0
\end{array} \right. = \sin \,x\left| \begin{array}{l}
^x\\
_0
\end{array} \right.\\
\Leftrightarrow f\left( x \right){e^{ - \cos x}} - f\left( 0 \right).{e^{ - 1}} = \sin \,x\\
\Leftrightarrow f\left( x \right){e^{ - \cos x}} - 2e.{e^{ - 1}} = \sin \,x\\
\Leftrightarrow f\left( x \right){e^{ - \cos x}} = \sin \,x + 2\\
\Leftrightarrow f\left( x \right) = \left( {\sin \,x + 2} \right){e^{\cos x}}
\end{array}\)
Khi đó ta có \(I = \int\limits_0^\pi {f\left( x \right)dx = \int\limits_0^\pi {\left( {\sin \,x + 2} \right){e^{\cos x}}dx \approx 10,31} } \)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247