Cho hàm số \(f(x) = \frac{{{4^x}}}{{{4^x} + 2}}\). Giá trị của \(f\left( {\frac{1}{{100}}} \right) + f\left( {\frac{2}{{100}}} \right) + ...

Câu hỏi :

Cho hàm số \(f(x) = \frac{{{4^x}}}{{{4^x} + 2}}\). Giá trị của \(f\left( {\frac{1}{{100}}} \right) + f\left( {\frac{2}{{100}}} \right) + ... + f\left( {\frac{{99}}{{100}}} \right)\) bằng

A. 49

B. \(\frac{1}{2}\)

C. \(\frac{99}{2}\)

D. 50

* Đáp án

C

* Hướng dẫn giải

Trước hết ta có

\(f\left( x \right) + f\left( {1 - x} \right) = \frac{{{4^x}}}{{{4^x} + 2}} + \frac{{{4^{1 - x}}}}{{{4^{1 - x}} + 2}} = 1\)

Áp dụng kết quả này ta được

\(f\left( {\frac{1}{{100}}} \right) + f\left( {\frac{2}{{100}}} \right) + ... + f\left( {\frac{{99}}{{100}}} \right)\)

\( = \sum\limits_{k = 1}^{40} {\left[ {f\left( {\frac{k}{{100}}} \right) + f\left( {1 - \frac{k}{{100}}} \right)} \right]}  + f\left( {\frac{1}{2}} \right) = 49 + \frac{1}{2} = \frac{{99}}{2}\)

Copyright © 2021 HOCTAP247