Trong không gian với hệ tọa độ Descartes Oxyz cho mặt cầu (S) có phương trình \({x^2} + {y^2} + {z^2} = 9\) và điểm A(0, -1

Câu hỏi :

Trong không gian với hệ tọa độ Descartes Oxyz cho mặt cầu (S) có phương trình \({x^2} + {y^2} + {z^2} = 9\) và điểm A(0, -1, 2). Gọi (P) là mặt phẳng qua A và cắt mặt cầu (S) theo một đường tròn có chu vi nhỏ nhất. Phương trình của (P) là

A. \(y - 2z + 5 = 0\)

B. \( - y + 2z + 5 = 0\)

C. \(y - 2z - 5 = 0\)

D. \(x - y + 2z - 5 = 0\)

* Đáp án

A

* Hướng dẫn giải

Dễ dàng kiểm tra được điểm A nằm trong khối cầu (S). Mặt phẳng (P) cắt mặt cầu (S) theo một đường trong có chu vi nhỏ nhất khi và chỉ khi khoảng cách từ tâm O của (S) tới (P) là lớn nhất. Mà \(d\left( {O,\left( P \right)} \right) \le OA\) và đẳng thức xảy ra khi và chỉ khi A là hình chiếu của O trên (P). Khi đó (P) sẽ nhận \(\overrightarrow {OA}  = \left( {0, - 1,2} \right)\) làm vectơ pháp tuyến.

Vậy \(\left( P \right):0\left( {x - 0} \right) - 1\left( {y + 1} \right) + 2\left( {z - 2} \right) = 0 \Leftrightarrow y - 2z + 5 = 0\)

Copyright © 2021 HOCTAP247