Với giá trị nào của tham số m để đồ thị hàm số (y = x - sqrt {m{x^2} - 3x + 7} ) có tiệm cận ngang.

Câu hỏi :

Với giá trị nào của tham số m để đồ thị hàm số \(y = x - \sqrt {m{x^2} - 3x + 7} \) có tiệm cận ngang.

A. m = 1

B. m = -1

C. \(m \pm 1.\)

D. không có m

* Đáp án

A

* Hướng dẫn giải

Đồ thị hàm số có tiệm cận ngang.

=> Hàm số xác định trên một trong các miền \(\left( { - \infty ,a} \right),\left( { - \infty ;\left. a \right]} \right.,\left( {a, + \infty } \right)\) hoặc \(\left[ {a;\left. { + \infty } \right)} \right.\)

\( \Rightarrow m \ge 0\) 

TH1: \(m = 0 \Rightarrow y = x - \sqrt { - 3x + 7} \) đồ thị hàm số không tiệm cận ngang.

TH2: \(m > 0 \Rightarrow y = x - \sqrt {m{x^2} - 3x + 7} \) 

Khi \(x \to  + \infty ,y = x - x\sqrt {m - \frac{3}{x} + \frac{7}{{{x^2}}}} \) , đồ thị hàm số có tiệm cận ngang khi và chỉ khi m = 1 

Khi $\( \to  - \infty ,y = x + x\sqrt {m - \frac{3}{x} + \frac{7}{{{x^2}}}}  \to  - \infty \), đồ thị hàm số không có tiệm cận ngang.

KL: m = 1

 

Copyright © 2021 HOCTAP247