A.
\(\left[ \begin{array}{l}
y = 9x + 19\\
y = 9x - 21
\end{array} \right.\)
B.
\(\left[ \begin{array}{l}
y = 9x - 19\\
y = 9x + 21
\end{array} \right.\)
C.
\(\left[ \begin{array}{l}
y = 9x - 15\\
y = 9x + 17
\end{array} \right.\)
D. y = 9x - 15
D
Gọi \(M\left( {{x_0};{y_0}} \right)\) là tiếp tuyến của tiếp điểm cần tìm.
Ta có \(y' = 3{x^2} - 3.\) Vì tiếp tuyến song song với đường thẳng \(\left( d \right):y = 9x + 17\) nên phương trình tiếp tuyến có dạng \(y = 9x + b,\left( {b \ne 17} \right).\)
Khi đó \(y'\left( {{x_0}} \right) = 9 \Leftrightarrow 3{x_0}^2 - 3 = 9 \Leftrightarrow {x_0} = \pm 2.\)
Với \({x_0} = 2,\) ta có \(y'\left( {{x_0}} \right) = 9 \Leftrightarrow 3{x_0}^2 - 3 = 9 \Leftrightarrow {x_0} = \pm 2.\) Do đó phương trình tiếp tuyến là:
\(y = 9\left( {x - 2} \right) + 3 \Leftrightarrow y = 9x - 15\)
Với \({x_0} =- 2,\) ta có \({y_0} = {\left( { - 2} \right)^3} - 3.\left( { - 2} \right) + 1 = - 1.\) Do đó phương trình tiếp tuyến là:
\(y = 9\left( {x + 2} \right) - 1 \Leftrightarrow y = 9x + 17\) (loại vì \(b \ne 17\))
Vậy phương trình tiếp tuyến thỏa mãn yêu cầu đề bài là y = 9x - 15
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247