Giá trị lớn nhất của hàm số \(f\left( x \right) = \frac{x}{{x + 3}}\) trên đoạn [- 2;3] bằng  

Câu hỏi :

Giá trị lớn nhất của hàm số \(f\left( x \right) = \frac{x}{{x + 3}}\) trên đoạn [- 2;3] bằng  

A. - 2

B. \(\frac{1}{2}.\)

C. 3

D. 2

* Đáp án

B

* Hướng dẫn giải

Hàm số \(f\left( x \right) = \frac{x}{{x + 3}}\) xác định trên đoạn [- 2;3] 

Ta có:

\(f'\left( x \right) = \frac{{1.3 - 0.1}}{{{{\left( {x + 3} \right)}^2}}} = \frac{3}{{{{\left( {x + 3} \right)}^2}}} > 0,\forall x \in \left[ { - 2;3} \right] \Rightarrow \) Hàm số luôn đồng biến trên đoạn [- 2;3] 

Suy ra GTLN của hàm số \(f\left( x \right) = \frac{x}{{x + 3}}\) trên đoạn [- 2;3] là: \(f\left( 3 \right) = \frac{3}{{3 + 3}} = \frac{1}{2}\) 

Copyright © 2021 HOCTAP247