Trong không gian Oxyz, lấy điểm C trên tia Oz sao cho OC = 1.

Câu hỏi :

Trong không gian Oxyz, lấy điểm C trên tia Oz sao cho OC = 1. Trên hai tia Ox, Oy lần lượt lấy hai điểm A, B thay đổi sao cho OA+OB = OC. Tìm giá trị nhỏ nhất của bán kính mặt cầu ngoại tiếp tứ diện O.ABC?

A. \(\frac{{\sqrt 6 }}{4}.\)

B. \(\sqrt 6 .\)

C. \(\frac{{\sqrt 6 }}{3}.\)

D. \(\frac{{\sqrt 6 }}{2}.\)

* Đáp án

A

* Hướng dẫn giải

Giả sử \(A\left( {a;0;0} \right),\,\,B\left( {0;b;0} \right) \Rightarrow OA = \left| a \right|,OB = \left| b \right|\).

Tứ diện OABCOA, OB, OC đôi một vuông góc.

Gọi M, N lần lượt là trung điểm của ABOC.

Ta có \(\left\{ \begin{array}{l}
OC \bot OA\\
OC \bot OB
\end{array} \right. \Rightarrow OC \bot \left( {OAB} \right)\) 

Qua M dựng đường thẳng song song với OC, qua N dựng đường thẳng

 song song với OM. Hai đường thẳng này cắt nhau tại I.

\(\Delta OAB\) vuông tại \(O \Rightarrow M\) là tâm đường tròn ngoại tiếp \(\Delta OAB \Rightarrow IO = IA = IB\).

\(I \in IN \Rightarrow IO = IC \Rightarrow IO = IA = IB = IC \Rightarrow I\) là tâm mặt cầu ngoại tiếp O.ABC

Ta có \(OM = \frac{1}{2}AB = \frac{1}{2}\sqrt {{a^2} + {b^2}} \) 

\(\begin{array}{l}
R = OI = \sqrt {I{M^2} + O{M^2}}  = \sqrt {\frac{{{c^2}}}{4} + \frac{{{a^2} + {b^2}}}{4}}  = \frac{{\sqrt {{a^2} + {b^2} + {c^2}} }}{2}\frac{{\sqrt {{a^2} + \left( {1 - {a^2}} \right) + 1} }}{2} = \frac{{\sqrt {2{a^2} - 2a + 2} }}{2}\\
\,\,\,\, = \frac{{\sqrt {2\left( {{a^2} - a + 1} \right)} }}{2} = \frac{{\sqrt {2\left( {{a^2} - 2.a.\frac{1}{2} + \frac{1}{4} + \frac{3}{4}} \right)} }}{2} = \frac{{\sqrt {2{{\left( {a - \frac{1}{2}} \right)}^2} + \frac{3}{2}} }}{2} \ge \frac{{\sqrt 6 }}{4}
\end{array}\) 

Vậy \({R_{\min }} = \frac{{\sqrt 6 }}{4} \Leftrightarrow a = \frac{1}{2} \Rightarrow b = \frac{1}{2}\).  

Copyright © 2021 HOCTAP247