A. \(\frac{{\sqrt 3 }}{2}cm.\)
B. \(\frac{{\sqrt 5 }}{2}cm.\)
C. \(\frac{{\sqrt 3 }}{4}cm.\)
D. \(\frac{{\sqrt 5 }}{4}cm.\)
A
Gọi I là trung điểm của SA.
Tam giác SAB, SAC vuông tại \(B,C \Rightarrow IS = IA = IB = IC \Rightarrow I\) là tâm mặt cầu ngoại tiếp chóp S.ABC.
Gọi H là trung điểm của BC. Vì \(\Delta ABC\) vuông tại \(A \Rightarrow H\) là tâm đường tròn ngoại tiếp tam giác ABC.
\( \Rightarrow IH \bot \left( {ABC} \right)\).
Gọi R là bán kính mặt cầu ngoại tiếp chóp S.ABC. Theo bài ra ta có:
\(\begin{array}{l}
\frac{4}{3}\pi {R^3} = \frac{{5\sqrt 5 \pi }}{6} \Leftrightarrow {R^3} = \frac{{5\sqrt 5 }}{8} = \frac{{\sqrt {125} }}{8} \Leftrightarrow R = \frac{{\sqrt 5 }}{2}\\
\Rightarrow IS = IA = IB = IC = \frac{{\sqrt 5 }}{2}
\end{array}\)
Xét tam giác vuông ABC có: \(BC = \sqrt {A{B^2} + A{C^2}} = 2 \Rightarrow AH = 1\)
Xét tam giác vuông IAH có: \(IH = \sqrt {I{A^2} - A{H^2}} = \sqrt {\frac{5}{4} - 1} = \frac{1}{2}\)
\(\begin{array}{l}
{S_{\Delta ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}.1.\sqrt 3 = \frac{{\sqrt 3 }}{2}\\
\Rightarrow {V_{I.ABC}} = \frac{1}{3}IH.{S_{\Delta ABC}} = \frac{1}{3}.\frac{1}{2}.\frac{{\sqrt 3 }}{2}
\end{array}\)
Ta có:
\(\begin{array}{l}
SI \cap \left( {ABC} \right) = A \Rightarrow \frac{{d\left( {S;\left( {ABC} \right)} \right)}}{{d\left( {I;\left( {ABC} \right)} \right)}} = \frac{{SA}}{{IA}} = 2\\
\Rightarrow \frac{{{V_{S.ABC}}}}{{{V_{S.IBC}}}} = 2 \Rightarrow {V_{S.ABC}} = 2{V_{I.ABC}} = 2.\frac{{\sqrt 3 }}{{12}} = \frac{{\sqrt 3 }}{6}
\end{array}\)
Xét tam giác vuông SAB có \(IB = \frac{{\sqrt 5 }}{2} \Rightarrow SA = 2IB = \sqrt 5 \Rightarrow SB = \sqrt {S{A^2} - A{B^2}} = 2\)
\( \Rightarrow {S_{\Delta SAB}} = \frac{1}{2}.1.2 = 1\)
Ta có \({V_{S.ABC}} = \frac{1}{3}d\left( {C;\left( {SAB} \right)} \right).{S_{\Delta SAB}} \Rightarrow d\left( {C;\left( {SAB} \right)} \right) = \frac{{3{V_{S.ABC}}}}{{{S_{\Delta SAB}}}} = \frac{{3.\frac{{\sqrt 3 }}{6}}}{1} = \frac{{\sqrt 3 }}{2}\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247