Tìm tất cả các giá trị thực của tham số m để phương trình \({e^{3m}} + {e^m} = 2\left( {x + \sqrt {1 - {x^2}} } \right)\left( {1

Câu hỏi :

Tìm tất cả các giá trị thực của tham số m để phương trình \({e^{3m}} + {e^m} = 2\left( {x + \sqrt {1 - {x^2}} } \right)\left( {1 + x\sqrt {1 - {x^2}} } \right)\) có nghiệm.   

A. \(\left[ {\frac{1}{2}\ln 2; + \infty } \right).\)

B. \(\left( {0;\frac{1}{2}\ln 2} \right).\)

C. \(\left( { - \infty ;\frac{1}{2}\ln 2} \right].\)

D. \(\left( {0;\frac{1}{e}} \right).\)

* Đáp án

B

* Hướng dẫn giải

ĐKXĐ: \(1 - {x^2} \ge 0 \Leftrightarrow  - 1 \le x \le 1.\) 

Đặt \(x + \sqrt {1 - {x^2}}  = t\) ta có \({t^2} = {x^2} + 1 - {x^2} + 2x\sqrt {1 - {x^2}}  = 1 + 2x\sqrt {1 - {x^2}}  \Rightarrow x\sqrt {1 - {x^2}}  = \frac{{{t^2} - 1}}{2}\).

Ta có: \(t\left( x \right) = x + \sqrt {1 - {x^2}} ,x \in \left[ { - 1;1} \right] \Rightarrow t'\left( x \right) = 1 - \frac{x}{{\sqrt {1 - {x^2}} }} = \frac{{\sqrt {1 - {x^2}}  - x}}{{\sqrt {1 - {x^2}} }} = 0\) 

\( \Leftrightarrow \sqrt {1 - {x^2}}  = x \Leftrightarrow \left\{ \begin{array}{l}
x \ge 0\\
1 - {x^2} = {x^2}
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x \ge 0\\
{x^2} = \frac{1}{2}
\end{array} \right. \Leftrightarrow x = \frac{{\sqrt 2 }}{2}.\)  

Từ BBT ta có: \(t \in \left[ { - 1;\sqrt 2 } \right]\).

Khi đó phương trình trở thành: \({e^m} + {e^{3m}} = 2t\left( {1 + \frac{{{t^2} - 1}}{2}} \right) = t\left( {{t^2} + 1} \right) = {t^3} + t\,\,\left( * \right)\)  

Xét hàm số \(f\left( t \right) = {t^3} + t\) ta có \(f'\left( t \right) = 3{t^2} + 1 > 0\,\,\forall t \Rightarrow \) Hàm số đồng biến trên \(R \Rightarrow \) Hàm số đồng biến trên \(\left( { - 1;\sqrt 2 } \right)\).

Từ \(\left( * \right) \Rightarrow f\left( {{e^m}} \right) = f\left( t \right) \Leftrightarrow {e^m} = t \Leftrightarrow m = \ln t \Rightarrow m \in \left( {0;\ln \sqrt 2 } \right) = \left( {0;\frac{1}{2}\ln 2} \right)\) .

Copyright © 2021 HOCTAP247