Trong không gian Oxyz, cho điểm A(0;1;9) và mặt cầu \(\left( S \right):{\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} + {\

Câu hỏi :

Trong không gian Oxyz, cho điểm A(0;1;9) và mặt cầu \(\left( S \right):{\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z - 4} \right)^2} = 25.\) Gọi (C) là giao tuyến của (S) và mặt phẳng (Oxy). Lấy hai điểm M, N trên (C) sao cho \(MN = 2\sqrt 5 .\) Khi tứ diện OAMN có thể tích lớn nhất thì đường thẳng MN đi qua điểm nào dưới đây?

A. (5;5;0)

B. (4;6;0)

C. \(\left( {\frac{{12}}{5}; - 3;0} \right).\)

D. \(\left( { - \frac{1}{5};4;0} \right).\)

* Đáp án

A

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2019 môn Toán Sở GD & ĐT Hà Nam

Số câu hỏi: 50

Copyright © 2021 HOCTAP247