Cho hai số thực \(x, y\) thoả mãn phương trình \(x + 2i = 3 + 4yi\). Khi đó giá trị của x và y là:

Câu hỏi :

Cho hai số thực \(x, y\) thoả mãn phương trình \(x + 2i = 3 + 4yi\). Khi đó giá trị của x và y là:

A. x = 3, y = 2

B. \(x = 3i, y = \frac{1}{2}\)

C. \(x = 3, y = \frac{1}{2}\)

D. \(x = 3, y = -\frac{1}{2}\)

* Đáp án

C

* Hướng dẫn giải

\(x + 2i = 3 + 4yi \Rightarrow \left\{ \begin{array}{l}
x = 3\\
2 = 4y
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x = 3\\
y = \frac{1}{2}
\end{array} \right.\)

Copyright © 2021 HOCTAP247