Tìm số nghiệm của phương trình \({\log _3}\left( {{x^2} + 4x} \right) + {\log _{\frac{1}{3}}}\left( {2x + 3} \right) = 0\)

Câu hỏi :

Số nghiệm của phương trình \({\log _3}\left( {{x^2} + 4x} \right) + {\log _{\frac{1}{3}}}\left( {2x + 3} \right) = 0\) là

A. 2

B. 0

C. 1

D. 3

* Đáp án

C

* Hướng dẫn giải

Điều kiện: \(\left\{ \begin{array}{l}
{x^2} + 4x > 0\\
2x + 3 > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
\left[ \begin{array}{l}
x > 0\\
x <  - 4
\end{array} \right.\\
x >  - \frac{3}{2}
\end{array} \right. \Leftrightarrow x > 0\)            (*)

Ta có : \({\log _3}\left( {{x^2} + 4x} \right) + {\log _{\frac{1}{3}}}\left( {2x + 3} \right) = 0 \Leftrightarrow {\log _3}\left( {{x^2} + 4x} \right) = {\log _3}\left( {2x + 3} \right)\).

\( \Leftrightarrow {x^2} + 4x = 2x + 3 \Leftrightarrow {x^2} + 2x - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}
x = 1\\
x =  - 3
\end{array} \right.\). Kết hợp với (*) , ta được x = 1. 

Copyright © 2021 HOCTAP247