A. \(\frac{{{a^3}\sqrt 3 }}{3}.\)
B. \(\frac{{{2a^3}\sqrt 3 }}{3}.\)
C. \(\frac{{3{a^3}}}{{16}}.\)
D. \(\frac{{{a^3}}}{{16}}.\)
C
Gọi H, M, I lần lượt là trung điểm các cạnh AB, AC, AM.
Do \(A'H \bot \left( {ABC} \right) \Rightarrow A'H \bot AC\). Có \(HI{\rm{//}}BM,\;BM \bot AC \Rightarrow HI \bot AC\)
Do đó \(AC \bot \left( {A'HI} \right) \Rightarrow AC \bot A'I\), suy ra góc giữa hai mặt phẳng (ACC'A') và (ABC) là góc giữa A'I và IH, tức là góc \(\widehat {A'IH} = 45^\circ \).
Có \(IH = \frac{1}{2}BM = \frac{1}{2}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{4}\).
Trong tam giác A'HI có \(A'H = IH.\tan \widehat {A'IH} = \frac{{a\sqrt 3 }}{4}.\tan 45^\circ = \frac{{a\sqrt 3 }}{4}\).
Diện tích đáy \({S_{ABC}} = \frac{{{a^2}\sqrt 3 }}{4}\). Vậy \({V_{ABC.A'B'C'}} = A'H.{S_{ABC}} = \frac{{a\sqrt 3 }}{4}.\frac{{{a^2}\sqrt 3 }}{4} = \frac{{3{a^3}}}{{16}}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247