Cho hình chóp S.ABC  có đáy là tam giác vuông đỉnh B, AB = a, SA vuông góc với mặt phẳng đáy và SA = 2a.

Câu hỏi :

Cho hình chóp S.ABC  có đáy là tam giác vuông đỉnh B, AB = a, SA vuông góc với mặt phẳng đáy và SA = 2a. Khoảng cách từ A đến mặt phẳng (SBC) bằng

A. \(\frac{{2\sqrt 5 a}}{5}\)

B. \(\frac{{\sqrt 5 a}}{3}\)

C. \(\frac{{2\sqrt 2 a}}{3}\)

D. \(\frac{{\sqrt 5 a}}{5}\)

* Đáp án

A

* Hướng dẫn giải

Trong tam giác SAB dựng AH vuông góc SB thì \(AH \bot \left( {SBC} \right)\) do đó khoảng cách cần tìm là AH. Ta có: \(\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}} = \frac{5}{{4{a^2}}}\) suy ra \(AH = \frac{{2a\sqrt 5 }}{5}\).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi chính thức THPT QG năm 2018 môn Toán mã đề 101

Số câu hỏi: 50

Copyright © 2021 HOCTAP247