Xét các điểm số phức z thỏa mãn (left( {overline z  + i} ight)left( {z + 2} ight)) là số thuần ảo.

Câu hỏi :

Xét các điểm số phức z thỏa mãn \(\left( {\overline z  + i} \right)\left( {z + 2} \right)\) là số thuần ảo. Trên mặt phẳng tạo độ, tập hợp tất cả các điểm biểu diễn số phức z là một đường tròn có bán kính bằng

A. 1

B. 5/4

C. \(\frac{{\sqrt 5 }}{2}\)

D. \(\frac{{\sqrt 3 }}{2}\)

* Đáp án

C

* Hướng dẫn giải

Gọi \(z = a + bi\,\,\left( {a,b \in R} \right)\).

Ta có: \(\left( {\overline z  + i} \right)\left( {z + 2} \right) = \left( {a - bi + i} \right)\left( {a + bi + 2} \right) = \left( {{a^2} + 2a + {b^2} - b} \right) + \left( {a - 2b + 2} \right)i\)

Vì \(\left( {\overline z  + i} \right)\left( {z + 2} \right)\) là số thuần ảo nên ta có: \({a^2} + 2a + {b^2} - b = 0\)

\( \Leftrightarrow {\left( {a + 1} \right)^2} + {\left( {b - \frac{1}{2}} \right)^2} = \frac{5}{4}\)

Trên mặt phẳng tạo độ, tập hợp tất cả các điểm biểu diễn số phức z là một đường tròn có bán kính bằng \(\frac{{\sqrt 5 }}{2}\).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi chính thức THPT QG năm 2018 môn Toán mã đề 101

Số câu hỏi: 50

Copyright © 2021 HOCTAP247