Gọi S là tập hợp tất cả các giá trị nguyên của tham số m sao cho phương trình 16^x-m.4^x+1+5m^2-45=0 có 2 nghiệm phân biệt

Câu hỏi :

Gọi S là tập hợp tất cả các giá trị nguyên của tham số m sao cho phương trình \({16^x} - m{.4^{x + 1}} + 5{m^2} - 45 = 0\) có hai nghiệm phân biệt. Hỏi S có bao nhiêu phần tử?

A. 13

B. 3

C. 6

D. 4

* Đáp án

B

* Hướng dẫn giải

Đặt \(t = {4^x}\), t > 0. Phương trình đã cho trở thành

\({t^2} - 4mt + 5{m^2} - 45 = 0\)    (*).

Với mỗi nghiệm t > 0 của phương trình (*) sẽ tương ứng với duy nhất một nghiệm x của phương trình ban đầu. Do đó, yêu cầu bài toán tương đương phương trình (*) có hai nghiệm dương phân biệt. Khi đó

\(\left\{ \begin{array}{l}
\Delta ' > 0\\
S > 0\\
P > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
 - {m^2} + 45 > 0\\
4m > 0\\
5{m^2} - 45 > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
 - 3\sqrt 5  < m < 3\sqrt 5 \\
m > 0\\
\left[ \begin{array}{l}
m <  - 3\\
m > 3
\end{array} \right.
\end{array} \right. \Leftrightarrow 3 < m < 3\sqrt 5 \).

Do \(m \in Z\) nên \(m \in \left\{ {4;\,5;\,6} \right\}\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi chính thức THPT QG năm 2018 môn Toán mã đề 101

Số câu hỏi: 50

Copyright © 2021 HOCTAP247