Có tất cả bao nhiêu giá trị nguyên của m để hàm số (y = {x^8} + left( {m - 2} ight){x^5} - left( {{m^2} - 4} ight){x^4} + 1)

Câu hỏi :

Có tất cả bao nhiêu giá trị nguyên của m để hàm số \(y = {x^8} + \left( {m - 2} \right){x^5} - \left( {{m^2} - 4} \right){x^4} + 1\) đạt cực tiểu tại x = 0

A. 3

B. 5

C. 4

D. Vô số 

* Đáp án

C

* Hướng dẫn giải

Ta có: \(y' = 8{x^7} + 5\left( {m - 2} \right){x^4} - 4\left( {{m^2} - 4} \right){x^3} = {x^3}\left[ {\underbrace {8{x^4} + 5\left( {m - 2} \right)x - 4\left( {{m^2} - 4} \right)}_{g'\left( x \right)}} \right]\).

Ta xét các trường hợp sau

* Nếu \({m^2} - 4 = 0 \Rightarrow m =  \pm 2.\)

    Khi \(m = 2 \Rightarrow y' = 8{x^7} \Rightarrow x = 0\) là điểm cực tiểu.

    Khi m = -2  \( \Rightarrow y' = {x^4}\left( {8{x^4} - 20} \right) \Rightarrow x = 0\) không là điểm cực tiểu.

* Nếu \({m^2} - 4 \ne 0 \Rightarrow m \ne  \pm 2.\)

Khi đó ta có

\(y' = {x^2}\left[ {8{x^5} + 5\left( {m - 2} \right){x^2} - 4\left( {{m^2} - 4} \right)x} \right]\)

Số cực trị của hàm \(y = {x^8} + \left( {m - 2} \right){x^5} - \left( {{m^2} - 4} \right){x^4} + 1\) bằng số cực trị của hàm g'(x)

\(\left\{ \begin{array}{l}
g'\left( x \right) = 8{x^5} + 5\left( {m - 2} \right){x^2} - 4\left( {{m^2} - 4} \right)x\\
g''\left( x \right) = 40{x^4} + 100\left( {m - 2} \right)x - 4\left( {{m^2} - 4} \right)
\end{array} \right.\)

Nếu x = 0 là điểm cực tiểu thì g''(x) > 0 . Khi đó

\( - 4\left( {{m^2} - 4} \right) > 0 \Leftrightarrow {m^2} - 4 < 0 \Rightarrow  - 2 < m < 2 \Rightarrow m = \left\{ { - 1;0;1} \right\}\)

Vậy có 4 giá trị nguyên của m.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi chính thức THPT QG năm 2018 môn Toán mã đề 101

Số câu hỏi: 50

Copyright © 2021 HOCTAP247