Tìm tất cả các giá trị của tham số thực m để phương trình log^2 3 x

Câu hỏi :

Tìm tất cả các giá trị của tham số thực m để phương trình log32 x-3log3 x+2m-7=0 có hai nghiệm thực x1, x2 thỏa mãn (x1 + 3)(x2 + 3) = 72.

A. m=612

B. m=3

C. Không tn ti

D. m=92

* Đáp án

D

* Hướng dẫn giải

Đáp án D.

Đặt t = log3 x => t2 – 3t + 2m – 7 = 0

PT có 2 nghiệm khi =9-42m-7=37-8m>0

=> PT có 2 nghiệm t1; t2

log3 x1=t1log3 x2=t2x1=3t1x2=3t2

Khi đó theo định lý Viet ta có: 

t1+t2=3t1.t2=2m-7

Do

Đặt

Copyright © 2021 HOCTAP247