Cho (Cm) là đồ thị của hàm số y=x^3+3mx+1(với m thuộc

Câu hỏi :

Cho (Cm) là đồ thị của hàm số y=x3+3mx+1 (với m(-;0) là tham số thực). Gọi d là đường thẳng đi qua hai điểm cực trị của (Cm). Tìm số các giá trị của m để đường thẳng d cắt đường tròn tâm I(1;0) bán kính R=3 tại hai điểm phân biệt A, Bsao cho diện tích tam giác IAB đạt giá trị lớn nhất.

A.3

B.0

C.1

D.2

* Đáp án

C

* Hướng dẫn giải

Chọn C

.

nên phương trình có 2 nghiệm phân biệt.

Do đó hàm số có hai điểm cực trị .

Giả sử hàm số có hai điểm cực trị lần lượt là , với , là nghiệm của phương trình .

Thực hiện phép chia cho ta được : .

Khi đó ta có: .

Ta thấy, toạ độ hai điểm thoả mãn phương trình .

Do đó, phương trình đường thẳng qua hai điểm cực trị là .

Ta thấy luôn qua .

Đặt .

.

Xét hàm số , .

, .

Suy ra hàm số liên tục và đồng biến trên .

Do đó .

 

Vậy đạt giá trị lớn nhất .

Copyright © 2021 HOCTAP247