Cho hàm số \(y = {\left( {\frac{{2018}}{{2019}}} \right)^{{e^{3x}} - \left( {m - 1} \right){e^x} + 1}}\). Tìm m để hàm số đồng biến trên khoảng (1;2).

Câu hỏi :

Cho hàm số \(y = {\left( {\frac{{2018}}{{2019}}} \right)^{{e^{3x}} - \left( {m - 1} \right){e^x} + 1}}\). Tìm m để hàm số đồng biến trên khoảng (1;2).

A. \(3{e^3} + 1 \le m < 3{e^4} + 1\)

B. \(m \ge 3{e^4} + 1\)

C. \(3{e^2} + 1 \le m \le 3{e^3} + 1\)

D. \(m < 3{e^2} + 1\)

* Đáp án

B

Copyright © 2021 HOCTAP247