Có bao nhiêu giá trị nguyên của tham số m để tồn tại cặp số (x;y) thỏa mãn \({{\rm{e}}^{2x + y + 1}} - {{\rm{e}}^{3x + 2y}} = x + y - 1\), đồng thời thỏa mãn \(\log _2^2\left( {2x...
Có bao nhiêu giá trị nguyên của tham số m để tồn tại cặp số (x;y) thỏa mãn \({{\rm{e}}^{2x + y + 1}} - {{\rm{e}}^{3x + 2y}} = x + y - 1\), đồng thời thỏa mãn \(\log _2^2\left( {2x + y - 1} \right) - \left( {m + 4} \right){\log _2}x + {m^2} + 4 = 0\).