Biết rằng đồ thị của hàm số \(y = P\left( x \right) = {x^3} - 4{x^2} - 6x + 2\) cắt trục hoành tại ba điểm phân biệt lần lượt có hoành độ là \({x_1},{x_2},{x_3}\). Tính giá trị của...

Câu hỏi :

Biết rằng đồ thị của hàm số \(y = P\left( x \right) = {x^3} - 4{x^2} - 6x + 2\) cắt trục hoành tại ba điểm phân biệt lần lượt có hoành độ là \({x_1},{x_2},{x_3}\). Tính giá trị của \(T = \frac{1}{{x_1^2 - 4{x_1} + 3}} + \frac{1}{{x_2^2 - 4{x_2} + 3}} + \frac{1}{{x_3^2 - 4{x_3} + 3}}\)?

A. \(T = \frac{1}{2}\left[ {\frac{{P'\left( 1 \right)}}{{P\left( 1 \right)}} + \frac{{P'\left( 3 \right)}}{{P\left( 3 \right)}}} \right]\)

B. \(T = \frac{1}{2}\left[ -{\frac{{P'\left( 1 \right)}}{{P\left( 1 \right)}} - \frac{{P'\left( 3 \right)}}{{P\left( 3 \right)}}} \right]\)

C. \(T = \frac{1}{2}\left[- {\frac{{P'\left( 1 \right)}}{{P\left( 1 \right)}} - \frac{{P'\left( 3 \right)}}{{P\left( 3 \right)}}} \right]\)

D. \(T = \frac{1}{2}\left[ {\frac{{P'\left( 1 \right)}}{{P\left( 1 \right)}} - \frac{{P'\left( 3 \right)}}{{P\left( 3 \right)}}} \right]\)

* Đáp án

D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi giữa HK1 môn Toán 12 năm 2019 Trường THPT Nam Trực

Số câu hỏi: 49

Copyright © 2021 HOCTAP247